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Chaotic mixing of fluids in a planar serpentine channel
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Abstract

We have achieved rapid chaotic mixing of two fluids flowing in a planar serpentine convergent–divergent mini-channel, and analyzed
the transient three-dimensional flow field and distribution of concentration. The degree of irregularity of trajectories is increased through
experiencing a repeated configuration of turning with an amplified pressure gradient in the designed channel. The results reveal that the
pattern of the alternating convergent–divergent cross sections induces corner Dean cells with much increased Dean numbers; the stretch-
ing and folding of interfaces are effectively enhanced, resulting in superior chaotic mixing of fluids. Viewed on cross sections normal to
the main stream, the complicated trajectories appear to halt, swing and twist as the fluids approach the Dean cells. Along the stream, the
flow trajectories become increasingly irregular. The flow trajectories of Dean cells are symmetric with respect to the central cross section;
on each side of the cross section, the flow trajectories are highly unstable, spatially and temporally, around the Dean cell. In our mixing
channel the Dean cells in the mixing channel are arranged across the interfaces; the interfacial area between fluids is continuously dis-
torted and enlarged in a spiral behavior, thus effectively promoting the fluid mixing.
� 2006 Published by Elsevier Ltd.
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1. Introduction

Fluid mixing is a key issue in contemporary systems for
micro-total analysis, such as a DNA sensor [1], amino-acid
detector [2] and vitamin precursor reactor [3]. Because of
the large resistance and small inertia of fluids in a micro
system, enhancing the mixing between liquids remains a
challenge. A clarification of mixing mechanisms and effi-
cient designs of fluidic mixers are thus urgently needed.

After visualization of the folding of colored bands in
water, Reynolds first described mechanisms of fluid mixing
in 1893 [4]. To improve the efficiency of fluid mixing,
Welander observed and defined a chaotic feature, as a sim-
ple and regular flow with chaotic trajectories of fluid [5].
Ottino et al. [4,6–11] and Aref [5,12–14] subsequently eluci-
0017-9310/$ - see front matter � 2006 Published by Elsevier Ltd.
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dated these mechanisms: Aref achieved chaotic mixing at
small Reynolds numbers with appropriate blinking-vortex
flow of a two-dimensional temporally periodic model;
Ottino et al. performed a two-dimensional analysis on peri-
odic mixing with cavity flow and journal-bearing flow at
small Reynolds numbers [7,8]. For a simple and robust
design of fluidic mixers, chaotic mixing was achieved with
an alternative approach of a spatially periodic flow, such
as involving serpentine channels [13–15] and partitioned
pipes [16]. Through numerical simulation, Amon [17]
observed vortices and described chaotic phenomena at
Reynolds number 450 in a wave-like convergent–diver-
gent channel. Accompanying the development of micro
technology, various micro-fluidic mixers have been des-
cribed for which the order of Reynolds number is 10 or less
[14,18–20].

For an objective of satisfactory efficiency of mixing at a
small Reynolds number, chaotic mixing in a serpentine
channel has attracted much attention. For a fluid flowing
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in a serpentine channel, in 1927 Dean found that counter-
rotating roll cells exist at turns when the Reynolds number
of flow is great enough or the turn sufficiently large. This
amplitude is made quantitative as the Dean number [21],
defined according to the following equation:

Dn ¼ Re �
ffiffiffi
d
R

r
ð1Þ

Here Re is the Reynolds number, d represents the hydraulic
diameter, and R is the radius of the turn. Liu et al. [14] uti-
lized a micro scale, three-dimensional serpentine channel to
induce chaotic mixing in a range 6–70 of Reynolds number.
Castelain et al. [15] investigated the mixing of fluids in a
three-dimensional serpentine channel, generating an irregu-
lar trajectory of fluid particles with a centrifugal force and
geometrical perturbation.

Mass transfer resembles heat transfer. Peerhossaini et al.
[22,23] analyzed two heat exchangers of coils over a range
141–530 of Dean number; they recorded a velocity pattern
by laser Doppler velocimetry, and visualized the flow field
with fluorescence. Heat transfer is enhanced through cha-
otic trajectories. Acharya and Sen [24] demonstrated that
the flow in a coil with an alternating axis leads to chaotic
trajectories of particles, thus enhancing thermal transfer.
To induce secondary flow for fluid mixing, we chose a pla-
nar serpentine channel; our design resembles the alternat-
ing-axis concept of Acharya and Sen, but we incorporate
alternating convergent–divergent cross sections in the
channel.

2. Physical model

The designed fluidic mixer has a planar serpentine
channel with alternating convergent–divergent cross sec-
tions, Fig. 1. The depth of this channel is 2.00 mm and
its width is 2.00 mm at a narrow cross section or
4.00 mm at a wide cross section. Into an initially empty
channel co-flow a red species and a blue species with flow
velocity 80.0 mm/s after full development individually in
the entrance channels. The Reynolds number, qVd/l, is
160, with density q = 1000 kg/m3, velocity V = 80.0 mm/s,
Fig. 1. Schematic diagram
characteristic length d = 2.00 mm, and viscosity l =
1.00 � 10�3 kg/m s. As expected, Dean cells are induced
at Dean number 226. The working fluids are regarded as
incompressible Newtonian liquids. An interfacial force
between fluids is ignored. The Schmidt number, l/qD, is
500 and the Peclet number, Vd/D, is 80000; here D denotes
diffusivity.

The continuity equation is

oq
ot
þr �~u ¼ 0 ð2Þ

The momentum equation is

o~u
ot
þ~u � r~u ¼ � 1

q
rp þ l

q
r2~u ð3Þ

The species equation is

oC
ot
þ~u � rC ¼ Dr2C ð4Þ

The pressure at the outlets is fixed at 1.0 � 105 N/m2. At
the boundary between the solid wall and the working fluid,
the flow has no slip, and the local flow velocity is zero.

3. Numerical method

A time-dependent three-dimensional numerical simula-
tion was conducted with commercial software (CFD-
ACE+, CFDRC Corp., USA). The time accuracy is
upgraded with a Crank–Nicolson second-order method
and a blender factor 0.6. A SIMPLEC (semi-implicit
method for pressure-linked equations consistent) method
is adopted to solve the governing equations. All spatial dis-
cretizations are performed according to a first-order
upwind scheme. The solution is considered to attain con-
vergence when the relative difference of adjacent variables
in consecutive iterations is less than 1.00 � 10�4. Tests of
mesh refinement were examined for the entrance channel
with cells numbering 37440, 65472, 120988, 326400,
585648 and 1023178; the results show that the relative error
of velocity of cells of number from 65472 to 1023178 is
2.89 � 10�2. A structured hexagonal cell of size 6.09 �
10�13 m3 was thus chosen.
of the mixing channel.



Fig. 2. Distribution of regular trajectories.
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4. Results and discussion

Fluids are expected to mix via an enlargement of the
interface between the fluids. Our approach is to create
chaotic trajectories with flow in a planar serpentine conver-
gent–divergent channel at an appropriate Dean number;
which determines the degree of induced secondary flow.
For a sufficiently large Reynolds number or curvature of
turn, an adverse pressure gradient occurs, and circulating
flows called Dean cells are induced. We suppose that Dean
cells considerably enlarge the interface of fluids near the
corners so that fluids become effectively mixed. In this case
the Dean number is 226, at which creation of Dean cells is
possible. To verify our hypothesis, we analyze the distribu-
tions of trajectory, fluid and flow velocity.

4.1. Trajectory distributions modes

At an early stage, no vortex forms at the corners; subse-
quently, vortices form, develop and become stabilized at
the corners. After the flow is stabilized, the trajectory dis-
tributions are complicated and have varied degrees of reg-
ularity. The trajectory is regular when it is far from a Dean
cell. As shown in Fig. 2b, these trajectories are smooth, and
exhibit little disturbance in the z-direction, Fig. 2a and c. In
Figs. 2a, 3a and 4a, the green dashed lines1 designate the
initial interface between the influx fluids.

As the trajectory approaches a Dean cell, the degree of
distortion increases, especially in the z-direction, as in
Fig. 3c. The profile of this trajectory exhibits a cyclic
motion as viewed from the x-direction. As the trajectory
approaches nearer a Dean cell, it shows chaotic behavior
with the contour of the trajectory not returning through
the repeated configuration of the channel, Fig. 4. We sug-
gest that trajectories within the Dean cells might assist in
stretching the interface between the fluids. Fluids are
expected to mix effectively via the Dean cells.
1 For interpretation of the references to color in Figs. 2–4, the reader is
referred to the web version of this article.
To clarify the roles of various flow structures on mixing,
flow is decomposed into the stages in the main stream and
the corner flow, as shown in Figs. 5 and 6, respectively. The
trajectories in the main stream are more regular than in the
corner flow in the right and top views. These trajectories
neither flow in the transverse direction nor penetrate into
the corners. Trajectories of corner flow form vortices and
agitate the fluid effectively. The top view of the fluid trajec-
tories shows that the scales of vortices are smaller near the
top and bottom boundaries than those in the central cross
sections.

To show the intrinsic instability of fluid trajectories at
the central cross section, we plot a set of individual trajec-
tories at the middle cross section in the z-direction, Fig. 7;
the corresponding trajectory of an individual fluid element
is traced as shown in Fig. 8. Although the fluidic mixer has
a planar design, the flow has complicated three-dimen-
sional paths of motion. Almost all fluid trajectories demon-
strate that the fluid generally flows from the central cross
section in various ways. Along trajectory (a), fluid flows
initially in the longitudinal direction, but flows transversely
into the top corner on the left side downstream. Along tra-
jectory (b), fluid flows initially in the longitudinal direction,
and also diverts transversely to the right side; the direction
of the transverse motion is unstable. For those trajectories
not near vortices, the trajectories are stable and invariably
flow longitudinally, as shown by lines (c, d, e) in Fig. 8. For
trajectories near or passing through a vortex, the routes are
unstable. Flow might be initially longitudinal but diverts
into a conjugate vortex downstream, as indicated by lines
(a, b, i). Otherwise, flow might initially occur within a con-
jugate vortex, and shift toward the longitudinal direction
downstream. Adjacent vortices along the longitudinal
direction might be connected and interact with each other
via the same trajectory, as shown by lines (f, g, h).

The temporal variations of fluid trajectories for a fixed
point near a divergent turn at the middle cross section are
shown in Fig. 9. The fluid initially flows along the longitu-
dinal direction, such as line (a). As a vortex develops, the
trajectory continues to alter its direction and experiences a
period of instability, before it becomes stable after 4.2 ls.



Fig. 3. Distribution of swing trajectories.

Fig. 4. Distribution of twist trajectories.

Fig. 5. Three views of the fluid trajectories of central flow.
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The vortex of the divergent turn and another vortex follow-
ing the convergent turn eventually become connected with
the same trajectory, as indicated by line (i). Although the
trajectory seems unstable at the central cross section spa-
tially and temporally, the flow across this interface is nearly
zero. Usually, these unstable trajectories do not complicate
the velocity and mass fraction results, and exert only a slight
effect on fluid mixing across the central plane. However, in
our mixing channel the flow direction of the Dean cells is
arranged across the interfaces; the interfacial area between
the fluids is continuously distorted and enlarged in a spiral
behavior, so effectively promoting the fluid mixing.

4.2. Swirling intensity and fluid distribution

We define the swirling intensity as the square of flow
velocity projected on the analyzed cross section (V2 + W2).
To understand the turning effect of the channel, we ana-
lyzed the swirling intensity and the mass fraction at 12
cross sections of the channel, which are orthogonal to



Fig. 6. Three views of the fluid trajectories of corner flow.

Fig. 7. Chaotic fluid trajectories in the middle cross section and the z-direction.

Fig. 8. Longitudinal and transverse paths of motion of the fluid trajectories at the middle cross section and the z-direction.
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the x-direction as shown in Fig. 10. These cross sections
occur just before and beyond a turn; in this work each turn
is accompanied by an abruptly convergent or divergent
cross section.



Fig. 10. Analyzed cross sections of fluid distribution and the swirling flow pattern of the channel.

Fig. 11. Swirling intensity at the first six analyzed cross sections of the channel.

Fig. 9. Temporal variations of fluid trajectories at the middle cross section in the z-direction.

1274 K.-W. Lin, J.-T. Yang / International Journal of Heat and Mass Transfer 50 (2007) 1269–1277



K.-W. Lin, J.-T. Yang / International Journal of Heat and Mass Transfer 50 (2007) 1269–1277 1275
The swirling intensities on the analyzed cross sections
are shown in Fig. 11. Two working fluids are fully devel-
oped before entering the serpentine channel with no swirl-
ing, Fig. 11a. As the injected stream encounters a divergent
turn, it is tracked to follow the turning direction, Fig. 11b.
The flow exhibits a Y-shaped pattern as the fluids flow
through an upward turn. The flow near the wall is retarded
by a viscous force whereas the flow near the central cross
section is dominated by an inertial force. The maximum
flow upward is thus between the wall and the central cross
section. As the fluid flows into the suddenly convergent
Fig. 12. Swirling intensity at the next six a

Fig. 13. Fluid distribution at the first six a
cross section, a pair of strongly swirling flows is formed,
Fig. 11c. After a convergent turn, the swirling intensity of
flow weakens immediately in a narrow cross section, Fig
11d. According to the viscous effect, the swirling intensity
continuously decays, Fig. 11e. At the next divergent turn,
the swirling intensity increases slightly, Fig. 11f. At the next
six cross sections, the swirling intensity is repeated with
flow through a repeated configuration of channel,
Fig. 12. Because the Reynolds number is as small as 160,
the flow disturbance is not amplified on passing through
a repeated configuration of channel. Overall, the major
nalyzed cross sections of the channel.

nalyzed cross sections of the channel.



Fig. 14. Fluid distribution at the next six analyzed cross sections of the channel.
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swirling intensity occurs behind a convergent turn; we sup-
pose that the interface of fluids experiences a large distor-
tion there, so that fluids mix effectively in this region.

Fluid is transferred in the direction of the concentration
gradient (diffusion) and bulk flow (advection). Fluid distri-
bution at 12 analyzed cross sections are depicted in Fig. 13.
After the two working fluids are fully developed individu-
ally in the entrance channels, they begin to mix in the ser-
pentine channel, Fig. 13a. Experiencing an upward
diverging turn, the swirling flow makes the lower fluid
envelop the upper fluid, Fig. 13b. The increased swirling
flow before a convergent turn makes the lower fluid
envelop the upper fluid in advance, Fig. 13c. The pattern
of fluid distribution at cross section (e) is similar to that
at cross section (d), because there is little or no swirling
flow along the narrow channel. At the next divergent turn,
the fluid experiences a downward motion; the swirling flow
again distorts the interface of fluids, Fig. 13f. In summary,
the interface between the fluids is greatly distorted and
enlarged after a series of divergent and convergent turns.
At the next analyzed six cross sections, Fig. 14, the contour
of fluid distribution becomes blurred relative to Fig. 13.
Fluids are mixed effectively on experiencing alternating
divergent and convergent turns. The flow is not perturbed
at a small flow velocity in a regular configuration of the
channel. For the analyzed cross section, the non-zero
velocity there makes the interface of fluids continue to fluc-
tuate. Because the interface between the fluids is located at
the Dean cell, the interfacial area is distorted and enlarged
in a spiral manner. The fluid distribution varies continu-
ously at the next Dean cell until the mixed fluid becomes
uniform. Compared with the flow normal to the analyzed
cross section, the large flow velocity in the cross section
determines the degree of interface distortion. Fluids are
mixed chaotically via regular flow and irregular trajectories
in the fluids.

5. Conclusion

In this work we achieve rapid chaotic mixing of two flu-
ids flowing in a planar serpentine convergent–divergent
mini-channel. The transient three-dimensional flow field
and fluid distribution at Reynolds number 160, Schmidt
number 500, Péclet number 80000, and Dean number
226 are numerically analyzed. The degree of irregularity
of swinging and twisted flow trajectories is increased
through experiencing a repeated configuration of turning
with an amplified pressure gradient in the designed chan-
nel. The results reveal that the pattern of the alternating
convergent–divergent cross sections induces corner Dean
cells with much increased Dean numbers; the stretching
and folding of interfaces is hence effectively enhanced,
and a superior chaotic mixing of fluids is consequently
achieved.

At Schmidt number 500, molecular diffusion is much
slower than momentum diffusion. Molecular diffusion does
not affect the flow pattern, which is dependent solely on the
Reynolds number. The laminar flow at Reynolds number
160 inhibits the flow disturbances and results in a similar
velocity configuration in repetitive sectors. At Péclet num-
ber 80000, the degree of mixing is determined by the resi-
dence period and the interfacial area of fluids.

In the development stage after the entrance, a pair of
Dean cells is induced, grows, and finally turns stabilized
around the corners, and which considerably enlarge the
interface of fluids near the corners. Viewed on the cross sec-
tions normal to the main stream, the trajectories are com-
plicated and appear to halt, swing and twist as the fluids
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approach the Dean cells. Along the stream, the flow trajec-
tories become increasingly irregular. The entire flow trajec-
tories of Dean cells are symmetric with respect to the
central cross section. On each side of the cross section,
the flow trajectories are highly unstable, spatially and tem-
porally, around the Dean cells. In our mixing channel the
flow direction of the Dean cells is arranged across the inter-
faces; the interfacial area between the fluids is continuously
distorted and enlarged in a spiral behavior, so effectively
promoting the fluid mixing.
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